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Abstract. We study the 3-state hexagonal-lattice Potts antiferromagnet by a Monte Carlo
simulation using the Wang–Swendsen–Kotecký cluster algorithm. We study the staggered
susceptibility and the correlation length, and we confirm that this model is disordered at all
temperaturesT > 0. We also measure the ground-state entropy density.

1. Introduction

Antiferromagnetic Potts models [1–3] are much less well understood than their ferromagnetic
counterparts. One reason for this is that the behaviour depends strongly on the microscopic
lattice structure, in contrast to the universality typically enjoyed by ferromagnets. As a result,
many basic questions have to be investigated case-by-case: is there a phase transition at finite
temperature, and if so, of what order? What is the nature of the low-temperature phase? If
there is a critical point, what are the critical exponents and the universality classes? Can
these exponents be understood (for two-dimensional models) in terms of conformal field
theory?

The large-q behaviour of the antiferromagneticq-state Potts model is known rigorously
[4, 5]: for q large enough (how large depends on the lattice in question), this model
has a unique infinite-volume Gibbs measure and exponential decay of correlations at all
temperatures,including zero temperature: the system is disordered as a result of the large
ground-state entropy. However, for smaller values ofq, phase transitions can and do occur.
One expects that for each latticeL there will be a valueqc(L) such that:

(a) for q > qc(L) the model has exponential decay of correlations uniformly at all
temperatures, including zero temperature;

(b) for q = qc(L) the model has a critical point at zero temperature;
(c) for q < qc(L) any behaviour is possible. Often (though not always) the model has

a phase transition at nonzero temperature, which may be of either first or second order.
The problem, for each lattice, is to findqc(L) and to determine the precise behaviour

for eachq 6 qc(L).
The q-state Potts model on a latticeL is defined by the Hamiltonian

H = −J
∑
〈xy〉

δσx,σy (1.1)

where the sum
∑
〈xy〉 runs over all possible nearest-neighbour pairs of lattice sites (each

pair counted once), and each spin takes valuesσx ∈ {1, . . . , q}. The antiferromagnetic case

† E-mail address: jesus@jupiter.unizar.es
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Figure 1. Curves where the hexagonal-lattice Potts model has been solved:(eJ −1)3−3q(eJ −
1) = q2 (full curve), which has three branches; and the line eJ = 1− q (broken line). The
horizontal dotted lines correspond to eJ = 1 (separating the ferromagnetic and antiferromagnetic
regimes) and to eJ = 0 (separating the antiferromagnetic regime from the unphysical region
eJ < 0). The squares show the known ferromagnetic critical points (q = 1, 2, 3, 4); and the
diamond marks the known antiferromagnetic critical point forq = 2. The open circles show the
points where the two antiferromagnetic branches cross the eJ = 0 line, namelyq = (3±√5)/2.

corresponds toJ = −β < 0. The Potts antiferromagnet on the hexagonal (honeycomb)
lattice is the simplest case. First, we know that theq = 2 model has a critical point at
eJ = 2−√3 because the corresponding ferromagnetic model is critical at eJ = 2+√3, and
the hexagonal lattice is bipartite. Second, the results of [5] show that the hexagonal-lattice
antiferromagnet exhibits exponential decay of correlations at zero temperature forq > 4.
Thus,qc(hc) should lie somewhere strictly betweenq = 2 andq = 4. The behaviour at
q = 3 has not yet been analysed rigorously.

On the other hand, theq-state hexagonal-lattice Potts model has been solved (e.g. the
free and internal energies are exactly known) on two special curves in the(J, q) plane (see
figure 1):

(eJ − 1)3− 3q(eJ − 1) = q2 (1.2)

eJ = 1− q for 0< q < 4. (1.3)

These curves are the duality images [6] of the corresponding curves for the triangular-
lattice Potts antiferromagnet obtained by Baxter and collaborators [7–9]. Curve (1.2) has
three branches in the regionq > 0; the uppermost branch (with 06 q 6 ∞ and eJ > 1)
corresponds to the ferromagnetic critical line; the middle branch (with 06 q 6 4 and
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−1 6 eJ 6 1) contains theq = 2 antiferromagnetic critical point (eJ = 2 − √3) and
crosses the zero-temperature line eJ = 0 atq = (3+√5)/2≈ 2.618; the lowermost branch
crosses the zero-temperature line atq = (3−√5)/2 ≈ 0.382†. The second curve (1.3) is
physical (eJ > 0) only for 06 q 6 1.

The behaviour of the middle branch suggests that it may be the antiferromagnetic critical
curve. If this is the case, there would be a zero-temperature critical point at

q = qc(hc) = 3+√5

2
(1.4)

(if this assertion has any meaning‡) and the model would be disordered at all temperatures
for q > qc(hc). This conclusion is in agreement with the exact result of [5]. Further
interesting speculations can be found in [10].

Shrock and Tsai [15] used this theoretical argument to rule out the existence of a critical
point in the 3-state antiferromagnet. They also pointed out that this argument could fail if
there was a first-order phase transition (with finite correlation length). To test these ideas,
they performed Monte Carlo simulations over a large range of temperatures (06 β 6 5),
and studied the (static and dynamic) behaviour of the energy density. They found no signal
of hysteresis, and no critical slowing-down at largeβ for the Metropolis [16] and Swendsen–
Wang cluster [17, 18] algorithms. They finally concluded that the model is disordered at
all temperaturesT > 0.

However, the numerical results of [15] (namely, smoothness of the energy density
and boundedness of its integrated autocorrelation time for Metropolis and Swendsen–Wang
algorithms) do not constitutestrong evidence supporting the absence of criticality of this
model. A closely related model (e.g. the 3-state square-lattice Potts antiferromagnet [6, 19])
makes an excellent counterexample: it has a critical point atT = 0, but the energy density
is smooth over the entire temperature range, and the autocorrelation times for the Wang–
Swendsen–Kotecḱy (WSK) cluster algorithm [20, 21] are uniformly boundedτint . 7.6
[22–24]. On the other hand, the absence of critical slowing-down at largeβ for the (local)
Metropolis algorithm only implies that the specific heatCH is bounded. This comes from
the rigorous bound [25]:

τint,E & VCH (1.5)

whereV is the volume. Thus, a direct test of non-criticality for the 3-state hexagonal-lattice
Potts antiferromagnet is still lacking. This test can be achieved, for instance, by measuring
the staggered susceptibility and the correlation length.

Finally, the above-mentioned argument, which identifies exact solubility with criticality,
though plausible, is not necessarily valid. For example, in the triangular-lattice case there
are two curves where the model can be solved, and the antiferromagnetic critical point of
the q = 2 model (namely, eJ = 0) happens to lie on both of these curves. Moreover, the

† The middle branch is missing in [10, p 673, figure 8].
‡ The Potts models for nonintegerq can be given a rigorous meaning via the mapping onto the Fortuin–Kasteleyn
random-cluster model [11–13]. The trouble is that in the antiferromagnetic case (J < 0) this latter model has
negative weights, and so cannot be given a standard probabilistic interpretation. In particular, the existence of a
good infinite-volume limit is problematical; the limit could depend strongly on the subsequence of lattice sizes
and on the boundary conditions. The same is true of the ‘anti-Fortuin–Kasteleyn’ representation, in which the
coefficients are products of chromatic polynomials of clusters: again the weights can be negative for noninteger
q, and the existence of the infinite-volume limit is problematical. Likewise, the ice-model representation [6, 14]
has in general complex weights for 0< q < 4, even in the ferromagnetic case.



5972 J Salas

antiferromagnetic critical point of theq = 4 model, which is believed [8, 26–28]† to be at
eJ = 0, lies onone (though not the other) of these curves. Nevertheless,neither of these
two curves can properly be identified with the antiferromagnetic critical curve of this model,
as this identification would predict an incorrect scenario forq = 3 (see [5] for details).

In this note, we report the results of performing a direct test of noncriticality and we
show with no ambiguities that the 3-state Potts antiferromagnet on the hexagonal lattice
is always disordered. In section 2 we describe the method we have used to simulate the
system and the operators we have measured. In section 3 we display the results for the
energy, specific heat, staggered susceptibility and second-moment correlation length. All
these quantities (as well as the corresponding integrated autocorrelation times) are bounded
uniformly in the temperature and the lattice size. We conclude that the 3-state hexagonal-
lattice Potts antiferromagnet is disordered at all temperaturesT > 0. As a by-product of
our calculation, we compute the zero-temperature entropy density.

2. Numerical simulations

We have performed Monte Carlo simulations of the 3-state hexagonal-lattice Potts
antiferromagnet at temperatures ranging fromT = ∞ to T = 0. More precisely, we
have simulated this model fromβ = 0 to β = 9 in intervals of 0.05, and also exactly at
β = ∞. We have made our simulations using the WSK cluster algorithm. This algorithm
is quite simple: choose randomly two distinct statesµ, ν ∈ {1, . . . , q}; freeze all the spins
taking values6= µ, ν, and allow the remaining spins to take the value eitherµ or ν. The
induced antiferromagnetic Ising model is then simulated using the standard Swendsen–
Wang algorithm [17, 18]: form bonds between nearest-neighbour sites taking distinct spin
values (i.e. one taking the valueµ and the other one,ν) with probability p = 1− e−β ;
identify the clusters of sites connected by bonds, and for each cluster either keep the original
configuration or flip it (i.e.µ↔ ν) with equal probability. The WSK algorithm is suitable
to simulate this modelat zero temperaturebecause our lattices are bipartite [29, 24]. At
β = 0 we have started the simulations with a random configuration; at finiteβ > 0, we
started from the last configuration generated at the closest smallestβ; and atβ = ∞ we
started from an ordered configuration (spins in one sublattice all equal to 1, and spins on
the other sublattice all equal to 2).

The hexagonal lattice is not a Bravais lattice [30], as not all points are equivalent.
Rather, it is the union of two sublattices, the even and odd, each of which is isomorphic to
a triangular lattice (whose lattice spacing is larger by a factor of

√
3). The hexagonal lattice

can thus be viewed as an underlying triangular lattice (whichis Bravais) with a two-point
basis. To be more precise, consider a finite hexagonal latticeH with periodic boundary
conditions. Then the even sublattice ofH is a triangular latticeT . Conversely, given an
L×L triangular latticeT with periodic boundary conditions, we can construct a hexagonal
latticeH with Vhc = 2L2 points by taking the sites inT together with the centres of the
down-pointing elementary triangles ofT . Thus, a generic pointx of the hexagonal lattice
can be written as [31]:

x = x ′1η1+ x ′2η2+ εη ≡ x′ + εη (2.1a)

x ′1, x
′
2 = 1, . . . , L (2.1b)

† The authors of [27] studied the 3-colouring model on the hexagonal lattice, which is equivalent to the 3-state
Potts antiferromagnet on the Kagomé latticeat zero temperature. This latter model can be exactly mapped onto
the 4-state Potts antiferromagnet on the triangular latticeat zero temperature[28].
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wherex′ lives on the triangular lattice spanned by the (unit) vectors

η1 = (1, 0) (2.2a)

η2 =
(
−1

2
,

√
3

2

)
(2.2b)

andL is the linear size of the triangular sublattices†. In this paper we have considered
lattices ranging fromL = 3 to L = 48. The variableε = 0, 1 can be interpreted as the
‘parity’ of the corresponding lattice site: ifε = 0 (resp. ε = 1) the sitex belongs to the
even (resp. odd) sublattice. The vector

η = 1√
3
(0, 1) = 1

3(η1+ 2η2) (2.3)

is the so-called basis vector joining the two points of the basis. The pair(x′, ε) determines
uniquely a point on the hexagonal lattice, and conversely, given a pointx of the hexagonal
lattice we can uniquely obtain the pair(x′, ε) associated to it.

We have measured three basic observables. The simplest one is the energy

E =
∑
〈xy〉

δσxσy . (2.4)

The staggered magnetization can be written easily if we represent the spin at sitex by a
vector in the plane

σx =
(

cos
2π

3
σx, sin

2π

3
σx

)
. (2.5)

In this case, the staggering assigns a phase eiπε = (−1)ε depending solely on which
sublattice the spin is located‡. The square of the staggered magnetization can be written as

M2
stagg=

(∑
x′,ε

(−1)εσx′+εη

)2

= 3

2

3∑
α=1

∣∣∣∣∑
x′,ε

(−1)εδσx′+εη,α

∣∣∣∣2. (2.6)

This is a ‘zero-momentum’ observable. In order to estimate the second-moment correlation
length we have to define the corresponding ‘smallest-nonzero-momentum’ observable. The
translational invariance of the hexagonal latticeH is given by the underlying triangular
(Bravais) latticeT . Thus, the allowed momenta are those of a triangular lattice of size
L× L with periodic boundary conditions [30]:

k = 2π

L
m1ρ1+

2π

L
m2ρ2 (2.7a)

m1, m2 = 1, . . . , L. (2.7b)

† We have chosen the lattice spacing of the triangular sublattice to beaT = 1; the lattice spacing of the
corresponding hexagonal lattice is thereforeaH = 1/

√
3.

‡ This choice is motivated by what happens in theq = 2 case: atT = 0 all the spins on the even sublattice take
one value (say, 1), and all the spins on the other sublattice take the other value (say, 2). The natural staggering
corresponds to assign a phase eiπ to all the spins on the odd sublattice. We can generalize this to theq = 3 case
by assigning a general phase eiφ to all the spins on the odd sublattice. Then, the contribution of the six smallest
momenta (2.10) to the observable (2.11) is the same in average only whenφ = 0 (uniform magnetization), and
φ = π (staggered magnetization).
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The momenta are given in the basis

ρ1 =
2√
3

(√
3

2
,

1

2

)
(2.8a)

ρ2 =
2√
3
(0, 1) (2.8b)

defined by the relations

ηi · ρj = δij . (2.9)

The smallest nonzero momenta are

k =
{
±2π

L
ρ1,±

2π

L
ρ2,±

2π

L
(ρ1− ρ2)

}
(2.10)

all having |k| = 4π/(
√

3L). Thus, the smallest-nonzero-momentum observable associated
to (2.6) is

Fstagg= 3

2
× 1

6

6∑
n=1

3∑
α=1

∣∣∣∣∑
x′,ε

(−1)εeikn·(x′+εη)δσx′+εη,α

∣∣∣∣2. (2.11)

The contributions of the wavevectorskn and−kn are exactly the same; thus equation (2.11)
can be simplified:

Fstagg= 3

2
× 1

3

3∑
α=1

{∣∣∣∣∑
x′

e2π ix ′1/L[δσx′ ,α − e2π i/3Lδσx′+η,α]

∣∣∣∣2
+
∣∣∣∣∑
x′

e2π ix ′2/L[δσx′ ,α − e4π i/3Lδσx′+η,α]

∣∣∣∣2
+
∣∣∣∣∑
x′

e2π i(x ′1−x ′2)/L[δσx′ ,α − e−2π i/3Lδσx′+η,α]

∣∣∣∣2}. (2.12)

From these observables we have computed the following expectation values: the energy
density (per spin)

E = 1

Vhc
〈E〉 (2.13)

the specific heat

CH = 1

Vhc
var(E) ≡ 1

Vhc
[〈E2〉 − 〈E〉2] (2.14)

the staggered susceptibility

χstagg= 1

Vhc
〈M2

stagg〉 (2.15)

and the second-moment correlation length

ξ = (χstagg/Fstagg− 1)1/2

2 sin(π/L)
(2.16)
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whereFstagg is given by

Fstagg= 1

Vhc
〈Fstagg〉. (2.17)

For each observableO discussed above we have measured its integrated autocorrelation
time τint,O using a self-consistent truncation window of width 6τint [32, appendix C].

We have made 5× 105 (resp. 3.5× 105) iterations forL = 3, 6 (resp. L > 9). We
have discarded 10% of them to allow the system to reach equilibrium. The autocorrelation
times for all the observables were uniformly bounded inβ andL:

τint . 4. (2.18)

For L > 9 there is a sharper bound:τint . 3†. This means that we have made≈ 105τint

measurements, and we have discarded≈ 104τint iterations as a (conservative) prevention
against the existence of any slower mode not considered here.

We have made our simulations on two Pentium machines at 166 MHz. Each WSK
iteration took approximately 3× (2L2) µs; the total CPU used was approximately 13 days.

3. Data analysis

In this section we perform all fits using the standard weighted least-squares method. As
a precaution against corrections to scaling, we impose a lower cut-offL > Lmin on the
data points admitted in the fit, and we study systematically the effects of varyingLmin on
both the estimated parameters and theχ2. In general, our preferred fit corresponds to the
smallestLmin for which the goodness of fit is reasonable (e.g. the confidence level‡ is &
10–20%) and for which subsequent increases inLmin do not cause theχ2 to drop vastly
more than one unit per degree of freedom (DF).

Let us first consider the second-moment correlation lengthξ = ξ(β, L) (see figure 2).
We see that this observable is, for fixedL, a nondecreasing function ofβ which
asymptotically tends to the value atβ = ∞ (i.e. ξ(β = ∞, L)). At fixed β, the function
ξ(β, ·) is also nondecreasing. ForL > 12, the values ofξ(β, L) collapses well onto a single
curve. Furthermore,ξ(β, L) . 3.2 uniformly in β andL. Thus, the correlation length stays
bounded even atT = 0; this observation implies that there is no critical point for this model
at any temperatureT > 0§.

If we fit the values ofξ(∞, L) to a constant (=ξ(∞,∞)) we obtain a good fit for
Lmin = 12,

ξ(∞,∞) = 3.0828± 0.0098 (3.1)

with χ2 = 1.61 (2 DF, level = 45%). Thus,ξ(β, L) 6 ξ(∞,∞) uniformly in β andL.
The numerical value ofξ(∞,∞) is consistent with the observation that the thermodynamic
limit is attained in practice (i.e.ξ(β, L) � L) for L > 12. Therefore, we do not have to
consider larger lattices (i.e.L > 48).

† The fact thatτint is larger for smaller lattices can be understood because the correlation length satisfiesξ . 3
for all T andL. For smallL, the ratioξ/L is not much smaller than 1; however, for largeL, ξ/L� 1.
‡ The ‘confidence level’ is the probability thatχ2 would exceed the observed value, assuming that the underlying
statistical model is correct. An unusually low confidence level (e.g. less than 5%) thus suggests that the underlying
statistical model isincorrect—the most likely cause of which would be corrections to scaling.
§ In figure 2 we observe that the error bars forL = 24 are noticeably larger than the rest, especially in the
high-temperature (or small correlation length) region. This feature is solely a consequence of the definition of
the second-moment correlation length (2.16). It is easy to see that its error bar behaves likeσ(ξ) ∼ L2/ξ when
L� 1. This feature is absent in the other observables we have considered here (see figure 3).
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Figure 2. Second-moment correlation lengthξ of the 3-state hexagonal-lattice Potts
antiferromagnet as a function ofβ andL. Symbols indicateL = 3 (+), L = 6 (♦), L = 9 (�),
L = 12 (◦), andL = 24 (×). Points withL = 48 coincide withL = 24, and they are not
shown for clarity. The isolated points on the far right of the picture (displayed for convenience
at β = 9.5) are the data from the runs atβ = ∞.

This scenario also applies to the staggered susceptibility (see figure 3). This observable
[χstagg(β, L)] is also a nondecreasing function ofβ at fixedL, and ofL at fixedβ. Moreover,
for L > 12 the measurements collapse well onto a single curve, which is uniformly bounded:
χstagg(β, L) . 20. There is no signal of second-order or first-order phase transition at any
temperature.

If we fit the value of the staggered susceptibility at zero temperatureχstagg(β = ∞, L)
to a constant (= χstagg(∞,∞)), we obtain a good fit forLmin = 24

χstagg(∞,∞) = 19.070± 0.043 (3.2)

with χ2 = 0.48 (1 DF, level = 49%).
The energy and specific heat are both nonincreasing curves which tend asymptotically

to zero asβ → ∞. For L > 6 the points fall very approximately onto a single curve;
for both observables the finite-size corrections are very small. Our curve for the energy
coincides with that of Shrock and Tsai [15]. The specific heat does not show any signal of
transition points: it also decays smoothly to zero asβ →∞.

In conclusion, there is no signal of phase transitions at any temperatureT > 0 in the
3-state hexagonal-lattice Potts antiferromagnet. This model is disordered at all temperatures.

From the energy density one can easily compute the entropy density (per spin) of this
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Figure 3. Staggered susceptibilityχstagg of the 3-state hexagonal-lattice Potts antiferromagnet
as a function ofβ andL. Symbols are as in figure 2.

model [33]:

S(β) ≡ S(0)+ βE(β)−
∫ β

0
E(β ′) dβ ′ (3.3)

where the value of the entropy atβ = 0 is given byShc,q=3(β = 0) = logq = log 3.
Using our numerical data, we are able to compute the value of the entropy atβ = 9,

and we have to extrapolate this value somehow toβ = ∞. One way to achieve this is the
following. At very largeβ we are deep in the strong coupling limit, so we expect that the
energy density behaves asE(β) ∼ Ae−β +O(e−2β)†. If this is the case, we can compute
exactly the integral on the r.h.s. of (3.3) and relate the result to the energy density atβ:

S(∞) = S(0)− E(β)−
∫ β

0
E(β ′) dβ ′. (3.4)

Now the maximum value ofβ where we have computed the energy becomes a cut-off.
For each lattice sizeL, we have computed the values ofS(β = ∞, L) with this method
using different values of the cut-offβ; the results were consistent within statistical errors

† Although there is no obvious way to perform low-temperature series expansion for this model—there are too
many inequivalent ground states—it is reasonable to expect that there is an expansion in powers of e−β , which
corresponds to the minimum energy cost for a ‘overturned’ spin. Indeed, our numerical data behaves in this way
for large enoughβ.
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(usually the differences were much smaller than the statistical errors). The values of the
entropy density at zero temperature are displayed in table 1. The error bars are the sum of
the statistical errors (coming from the statistical errors of the energies) and the systematic
errors coming from the integration algorithm. We have used several extended trapezoidal
rules and different sizes of the integration intervals [34]: the systematic error takes account
(conservatively) of the differences we found.

Table 1. Values of the 3-state hexagonal-lattice Potts antiferromagnet entropy density at zero
temperatureShc,3(β = ∞, L) as a function of the lattice sizeL. The error bars are the sum of
the statistical and systematic errors

L Shc,3(∞, L)
3 0.535 387± 0.000 158
6 0.509 207± 0.000 097
9 0.507 220± 0.000 089

12 0.506 952± 0.000 043
24 0.506 864± 0.000 062
48 0.506 843± 0.000 012

If we fit the data to a constant (= Shc,3(∞,∞)) we find a good fit only forLmin = 24

Shc,3(∞,∞) = 0.506 844± 0.000 012 (3.5)

with χ2 = 0.11 (1 DF, level = 74%). This number is in agreement with Shrock and Tsai
[15, 35]:

Shc,3(∞,∞)ST = 0.5068± 0.0003 (3.6)

but the error bar is one order of magnitude smaller than in [35]. If we use the extended
ansatz of [35],

Shc,3(β = ∞, L) = Shc,3(∞,∞)+ c1

L2
+ c2

L4
+ c3

L6
(3.7)

we can reasonably fit all data (i.e.Lmin = 3) giving

Shc,3(∞,∞) = 0.506 841± 0.000 018 (3.8)

with χ2 = 0.40 (2 DF, level = 82%). This estimator agrees within errors with (3.5)/(3.6)†.
Indeed, the estimator (3.8) is contained within the rigorous lower and upper bounds

obtained by Shrock and Tsai for the hexagonal lattice [36, 37]:

(q4− 5q3+ 10q2− 10q + 5)1/2

q − 1
6 eShc,q (∞,∞) 6 (q2− 3q + 3)1/2. (3.9)

For q = 3 these bounds become

0.505 800. . . = log

(√
11

2

)
6 Shc,3(∞,∞) 6 log(

√
3) = 0.549 306. . . . (3.10)

† An ansatz of the formShc,3(β = ∞, L) = Shc,3(∞,∞)+ c1/L
2 is unable to fit well the data for any value of

Lmin. If we add a termc2/L
4, we get a good fit forLmin = 6, giving Shc,3(∞,∞) = 0.506 847± 0.000 013 with

χ2 = 0.075 (1 DF, level = 78%). The ansatz (3.7) is the first one to be able to fit all the data (Lmin = 3). Adding
a termc4/L

8 does not modify the conclusions.
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The lower bound is remarkably sharp: in [37] it is shown that if we extract the leading
term [= q(1−1/q)3/2] and expand the rest in powers ofy = 1/(q−1), the resulting series
for eShc,q (∞,∞) and its rigorous lower bound (cf (3.9)) agree up toO(y10). The lower bound
gives a very good approximation even forq as low asq = 3.

The zero-temperature entropy density (3.8) is a large fraction (≈ 46%) of the entropy
at T = ∞ [Shc,3(β = 0) = log 3 = 1.098 61. . .]. This large ground-state entropy makes
the system disordered at zero temperature.
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